针对波士顿住房数据集训练简单的MLP回归模型
多层感知机(MLP)有着非常悠久的历史,多层感知机(MLP)是深度神经网络(DNN)的基础算法
MLP基础知识
目的:创建用于简单回归/分类任务的常规神经网络(即多层感知器)和Keras MLP结构 每个MLP模型由一个输入层、几个隐藏层和一个输出层组成ASP站长网 每层神经元的数目不受限制
具有一个隐藏层的MLP
- 输入神经元数:3 - 隐藏神经元数:4 - 输出神经元数:2
回归任务的MLP 当目标(「y」)连续时 对于损失函数和评估指标,通常使用均方误差(MSE) from tensorflow.keras.datasets import boston_housing (X_train, y_train), (X_test, y_test) = boston_housing.load_data() 数据集描述 波士顿住房数据集共有506个数据实例(404个培训和102个测试) 13个属性(特征)预测“某一地点房屋的中值” 文件编号:https://keras.io/datasets/ 1.创建模型 Keras模型对象可以用Sequential类创建 一开始,模型本身是空的。它是通过「添加」附加层和编译来完成的 文档:https://keras.io/models/sequential/ from tensorflow.keras.models import Sequential
model = Sequential() 1-1.添加层 Keras层可以「添加」到模型中 添加层就像一个接一个地堆叠乐高积木 文档:https://keras.io/layers/core/ from tensorflow.keras.layers import Activation, Dense # Keras model with two hidden layer with 10 neurons each model.add(Dense(10, input_shape = (13,))) # Input layer => input_shape should be explicitly designated model.add(Activation('sigmoid')) model.add(Dense(10)) # Hidden layer => only output dimension should be designated model.add(Activation('sigmoid')) model.add(Dense(10)) # Hidden layer => only output dimension should be designated model.add(Activation('sigmoid')) model.add(Dense(1)) # Output layer => output dimension = 1 since it is regression problem # This is equivalent to the above code block model.add(Dense(10, input_shape = (13,), activation = 'sigmoid')) model.add(Dense(10, activation = 'sigmoid')) model.add(Dense(10, activation = 'sigmoid')) model.add(Dense(1)) (编辑:焦作站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |