加入收藏 | 设为首页 | 会员中心 | 我要投稿 焦作站长网 (https://www.0391zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

Pandas万花筒:让绘图变得更体面

发布时间:2021-05-22 20:11:03 所属栏目:大数据 来源:互联网
导读:流行 Python 数据分析库 Pandas 中的绘图功能一直是迅速绘制图表的首选之一。但是,其可用的可视化效果总是十分粗略,实用有余、美观不足。 笔者常用 Pandas 的

流行 Python 数据分析库 Pandas 中的绘图功能一直是迅速绘制图表的首选之一。但是,其可用的可视化效果总是十分粗略,实用有余、美观不足。

笔者常用 Pandas 的绘图功能快速地执行一些可视的数据探索,但在介绍数据洞察时,我会使用“更美观”的绘图库(如 Plotly 或 Bokeh )来重做可视化。

自最新的 Pandas 版本0.25.3发布后,无需这样做了,现在我们可以使用第三方可视化库作为 Pandas 绘图功能的后端。Plotly是一款基于 web 实现交互式可视化的流行Python库,其最近发布了 Pandas绘图后端。

来看看如何使用 Plotly 和 Bokeh 后端创建更丰富的可视化效果。

使用不同的后端

想要激活绘图功能的不同后端需在导入 pandas 后,添加此行代码:

pd.options.plotting.backend = 'plotly'

当前可用的后端有:

Plotly

Holoviews

Matplotlib

Pandas _bokeh

Hyplot

Plotly后端

Plotly是一个 Python库,其支持丰富的交互式可视化效果。Plotly包的好处之一在于它是在库的 Javascript 版本之上构建的,这意味着图表会基于Web,可以显示为 HTML 文件或嵌入到基于Python的Web应用程序中。用户还可以将可视化内容下载为高质量的图像文件,以便在文档或论文中使用。

下面来浏览一些Plotly作为Pandas绘图后端的快速示例。

如果还没有安装Plotly ,则需要使用pip intsall plotly来安装。如果是在Jupyterlab中使用 Plotly ,则需要额外执行几个安装步骤来显示可视化效果。首先,安装IPywaidgets:

pipenv install jupyterlab " ipywidgets>=7.5" 

pip install jupyterlab "ipywidgets>=7.5" 

然后运行以下命令以安装Plotly扩展:

jupyter labextension install jupyterlab-plotly@4.8.1 

为了说明绘图后端的用法,使用openml.org名为“wine(葡萄酒)”的数据集。

import pandas as pd 

      import numpy as np 

             from sklearn.datasets import fetch_openml 

             pd.options.plotting.backend ='plotly'

             X,y =fetch_openml("wine", version=1as_frame=Truereturn_X_y=True

      data = pd.concat([X,y], axis=1

      data.head() 

该数据集由各类葡萄酒的多个特征和相应的标签组成。下图显示了数据集的前几行。

Pandas万花筒:让绘图变得更体面

(编辑:焦作站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读