机器学习治理面临的五个难题
ML模型治理是组织如何控制访问、实现策略和跟踪模型活动的总体过程。它是降低模型故障、法规遵从性和攻击风险的必备工具。治理是使组织的底线和品牌风险最小化的基础。具有有效的机器学习治理的组织不仅对模型在生产中的运行方式具有细粒度的控制和可见性,而且通过将AI/ML治理策略与其他IT策略集成,可以释放操作效率。
通过治理,组织可以了解可能影响模型结果的所有变量,这有助于他们快速识别和缓解可能降低结果准确性和应用程序性能的问题(如模型漂移)。随着时间的推移,这些问题会直接影响企业的底线,侵蚀客户对品牌的信任。
为什么组织要与机器学习治理斗争? 治理是2021年各组织面临的首要挑战,因为它们竞相扩大其ML能力,以在快速数字化的市场中保持竞争力(资料来源:2021年企业发展趋势(ML报告)ASP站长网
当我们的客户需要为他们的组织处理机器学习治理时,我们看到他们面临五个主要的挑战。
1.最佳做法不明确。我们仍处于ML治理的早期阶段,组织缺乏一个清晰的路线图或规范性的建议来在他们自己独特的环境中有效地实现它。
2.法规不明确。不断变化和模棱两可的监管环境导致了不确定性,公司需要投入大量资源来维持合规性。那些跟不上的公司有失去竞争优势的风险。
3.现有的解决方案是手工的,不完整。即使是现在正在实施治理的组织,也在使用各种不同的工具和手工流程来实现治理。这样的解决方案不仅需要不断的维护,而且还可能造成覆盖范围上的严重差距。 (编辑:焦作站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |