加入收藏 | 设为首页 | 会员中心 | 我要投稿 焦作站长网 (https://www.0391zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 运营中心 > 产品 > 正文

2021年需要理解的五个人工智能概念

发布时间:2021-10-08 16:24:57 所属栏目:产品 来源:互联网
导读:应该通过复制我们的生物学来模仿人类的智慧吗?或者是我们的精神病学性与AI不相关的方式与鸟类生物学与航空航天工程无关紧要? ASP站长网 这是一个人在概念的概念

这是一个人在概念的概念以来一直在思考。我们希望建立智能系统,人类可以说是唯一真正聪明的物种。看着我们的灵感不是逻辑吗?但是,由于AI的构建块与生物基本件如此不同,我们不应该忘记人类,并跟随我们的研究导致我们的道路?

 

 

 

没有人知道ai将未来持有什么。我们所知道的是,现在深入学习越来越靠近人类的认知。也许人类在智能方面不那么特别,但进化给了我们一些独特的功能,我们在创建AI系统时更好地考虑。我们在这种环境中发展了几千年,慢慢地调整到不变的自然法则。为什么不通过模拟抛光机制来绕过这个过程?

 

在本文中,我将讨论目前是AI研究的最前沿的五个例子。每个都基于人类认知功能的某些方面,至少是松散的。这些概念在接下来的几年里将是中心的,因此让我们留意他们。

 

Transformer - 人类注意力机制

不久前,当基于复发的架构主导自然语言处理(NLP)时。如果您面临NLP问题 - 翻译,语音到文本,生成任务 - 您要么使用了Gated Recurrent单元(GRU)或长短短期内存(LSTM)。这两个架构旨在处理顺序输入数据。例如,系统可以采用英语句子并在西班牙语翻译中处理每个连续的单词。

 

这些模型的主要缺点之一是消失的梯度问题。因为信息被顺序处理,所以当系统即将输出第一个法语单词时,仅仅记住了第一个英文单词。为了解决这一缺陷,研究人员在2014年介绍了关注机制。通过模仿认知的关注,神经网络可以称重背景的影响。没有更多的信息损失。

 

2017年,谷歌的AI团队发表了最新的注意力机制。他说:注意机制足够强大,可以解决语言任务。我们不需要再次发生,我们不需要顺序处理。他们发明了著名的Transformer架构。Transformer影响了深入学习景观的方式,2012年亨廷的团队赢得了Imageenet挑战时的计算机视觉(CV)中的比赛。

(编辑:焦作站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读