被误解的人工智能带来的安全漏洞
如果你相信炒作,那人工智能(AI)和机器学习(ML)已经在保护现代IT基础设施安全方面发挥了重大作用。但真相是,这两种技术是强大却常被误解的工具,某些情况下,如果未能正确实现,甚至还会破坏公司的数据安全。
很多实例表明,“AI”是个过度使用的营销行话,无法准确描述这项与真正的人工智能相去甚远的现有技术。所谓的“AI平台”可能会让首席信息官们挠头,想知道到底是怎么能从庞大且不断增长的客户数据库中了解每位客户的行为的,或者平台到底有没有基于算法做出有根据的猜测。区分真正的AI和标准固定逻辑太难了。
对于Microsoft Teams、SharePoint、Microsoft 365、Google Drive等云应用,有权定义谁能访问文件和文件夹的是最终用户而非管理员。这种做法尽管对最终用户来说非常方便,却导致几乎无法以遵从策略的标准方式来控制公司的数据访问:因为每个人都可以修改许可。真正解决这一问题的唯一方法可能是某种形式的自动化解决方案,或者将访问权限审查外包出去。
大多数企业的环境中流转着大量数据,因而很多企业试图将AI用作自动化解决方案来查找和审核敏感数据的访问权限。这些解决方案仅显示应控制访问权限的文件子集(可能仍有成千上万),可避免用户被与其权限相关的数百万份文件的审查工作狂轰滥炸。看起来很明智,对吧?但实际上,这种方式忽略了不遵循算法所查找模式的数据,还常常引发误报。
用AI执行行为分析的三个问题 当前行为分析市场上没有真正的AI解决方案。真正的AI创建随机生成的算法,并用大量“正确”答案测试这些算法,再从中挑出最有效的。这就给使用AI进行行为分析带来了三个重大问题。ASP站长网
(1) 没有哪家公司拥有足够大的客户数据集供算法训练使用。即使假设有公司拥有这种体量的数据集,他们也不会想透露给别人知道,因为这有可能将自己树成黑客集火的巨大标靶。
(2) 每位客户都是独特的,所以即便公司可以用客户数据训练算法,却未必适用于他们的具体业务。
(3) 如果在逐个客户的基础上训练算法,那就是在当前系统上训练。这种情况下,如果当前系统已经处于理想状态,训练结果会相当不错;如果当前系统并不理想,会反而固化现有安全问题。 (编辑:焦作站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |