加入收藏 | 设为首页 | 会员中心 | 我要投稿 焦作站长网 (https://www.0391zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 评论 > 正文

机器学习中的参数与非参数技巧

发布时间:2021-10-05 15:57:19 所属栏目:评论 来源:互联网
导读:介绍 在我们的以前文章中介绍过统计学习中预测和推理之间的区别。尽管这两种方法的主要区别在于最终目标,但我们都需要估计一个未知函数f。 换句话说,我们需要

在我们的以前文章中介绍过统计学习中预测和推理之间的区别。尽管这两种方法的主要区别在于最终目标,但我们都需要估计一个未知函数f。

 

 

 

换句话说,我们需要学习一个将输入(即自变量X的集合)映射到输出(即目标变量Y)的函数,如下图所示。

 

Y = f(X) + ε

 

为了估计未知函数,我们需要在数据上拟合一个模型。我们试图估计的函数的形式通常是未知的,因此我们可能不得不应用不同的模型来得到它,或者对函数f的形式做出一些假设。一般来说,这个过程可以是参数化的,也可以是非参数化的。

 

在今天的文章中,我们将讨论机器学习背景下的参数和非参数方法。此外,我们将探讨它们的主要差异以及它们的主要优点和缺点。ASP站长网

 

参数化方法

在参数化方法中,我们通常对函数f的形式做一个假设。例如,你可以假设未知函数f是线性的。换句话说,我们假设函数是这样的。

 

f(X) = β₀ + β₁ X₁ + … + βₚ Xₚ

 

其中f(X)为待估计的未知函数,β为待学习的系数,p为自变量个数,X为相应的输入。

 

既然我们已经对要估计的函数的形式做出了假设,并选择了符合这个假设的模型,那么我们需要一个学习过程,这个学习过程最终将帮助我们训练模型并估计系数。

 

机器学习中的参数化方法通常采用基于模型的方法,我们对要估计的函数的形式做出假设,然后根据这个假设选择合适的模型来估计参数集。

 

参数化方法最大的缺点是,我们所做的假设可能并不总是正确的。例如,你可以假设函数的形式是线性的,但实际上它并不是。因此这些方法涉及较不灵活的算法,通常用于解决一些不复杂的问题。

(编辑:焦作站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读