技术不是AI落地的最大难题,「人才」才是
传统公司的高管在开始部署人工智能(AI)和机器学习(ML)时往往认为,挑战主要是技术问题,而在寻找内部数据源进行分析和选择正确的工具时尤其是这样。但他们可能没想到他们的传统公司已经拥有丰富的数据。
一般来说,传统公司的运营和客户互动在公用事业和采矿业、运输和航运、金融服务等领域都已经生成了大量的数据。这些数据可以用于解决非常广泛的问题,例如解决优化供应链、预测维护、减少事故、增加产量、提高运营效率、提高收入生产率以及增加客户价值等方面的问题。
然而世界各地的传统公司通常很快发现,要利用人工智能将这些机会变为现实,他们最大的问题不是技术,而是人才。
企业对数据科学家和分析师的需求非常强烈,而且需求持续超过供应。亚马逊、脸书、谷歌和其他科技领导者雇用了大量的数据科学家并为他们提供精彩的挑战和引人注目的机会。而从一个具有领先人工智能能力的敏锐数据科学家的角度来看,一个有100年历史的制造拖拉机、生产电器、经营发电厂或运输集装箱的公司相比之下可能就显得很 “乏味”。
此外,传统公司往往不是位于主要的科技中心(如硅谷、西雅图、奥斯汀、纽约或洛杉矶),所有这些都会令传统公司更难找到他们需要的数据科学家。解决方案是——外部招聘和内部建设双管齐下的人才战略。
利用有趣的问题招聘人才ASP站长网
传统企业为了吸引数据科学家,可以而且应该将重点放在为他们提供令人信服的、独特的和真实世界的商业问题上。Dataiku销售工程总监Grant Case是基于人工智能和机器学习的企业应用的领导者,他积极开展与澳大利亚和新西兰的传统企业的合作。他告诉笔者,“我们需要为数据科学家提供有趣的问题,让他们去研究并转化为价值。神奇发生的地方在于此。” (编辑:焦作站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |