DeepMind激起千层浪的这篇论文,并非绝对
本文对DeepMind近期的神经网络求解MIP(混合整数规划)的论文进行了一些初步解读。事实上,相较于此领域近期的类似工作,DeepMind的工作在MIP的求解开发某些环节,如分支定界,启发式算法上所做的利用神经网络的尝试,更加的精细化和高度工程化,并且与开源求解器的耦合程度明显更高,也取得了相对良好的进展,但是并未看到太多有突破性和颠覆性的思想。
Google的DeepMind团队最近官宣了一篇神经网络(Neural Networks)求解MIP论文。
一石激起千层浪,在国内外的运筹优化社群引起了讨论。ASP站长网
部分围观吃瓜群众纷纷表示:
This is uber cool.
Excited to see this merging of ML and combinatorial optimization finally happening.
攻破OR(运筹学)只是时间问题。
而一些实践派已经在伸手要代码了:
Is the code open-source? Would love to test it on some standard hard problems.
Going to need to see some code here.
It would be very interesting to test this.
其实,把机器学习和整数规划结合在一起并不是一个新课题。 (编辑:焦作站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |